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Disordered wires from a geometric viewpoint 
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Abstract. The Mello-Pereyra-Kumar theory is extended to arbitrary spin. Classification 
yields three universality classes. The average over disorder is related to geometrical concepts. 
The solution of the resulting differential equation is discussed, localization lengths and 
universal conductance fluctuations are computed. 

1. Introduction 

Some years ago, the experimental discovery of conductance fluctuations at low tem- 
peratures of systems that are small with respect to the inelastic scattering length initiated 
several theoretical studies. Since many results do not depend on details of the micro- 
scopic models, Mello, Pereyra and Kumar presented a theory dealing with the statistical 
distribution of the transfer matrix of a macroscopic quasi-one-dimensional conductor 
[ 11. They discussed several features of their model in the case of a time-reversal-invariant 
system. In a subsequent publication Mello presented an interesting calculation yielding 
the universal variance of the fluctuating conductance [2]. 

The present paper has two purposes. First we intend to describe the model of Mello 
er a1 from a global, coordinate-independent point of view. This leads to the well known 
mathematical task of solving the heat conduction problem on certain non-compact 
Riemannian manifolds. As a consequence, the solution of the basic differential equation, 
which is equivalent to the Focker-Planck equation in Mello’s setup, is identified as a 
heat kernel. It may be described in a semi-explicit manner by some geometrical 
considerations. The second aim is to extend the model to the more general situation 
where either time reversal symmetry is broken or the spin of the particles, which we 
allow to be arbitrary, participates in the interaction. Classification yields three univer- 
sality classes. As a physical application the dependence of the localization length on 
the number of scattering channels is discussed. Finally, Mello’s calculation of the 
universal variance of conductance fluctuations is carried over to the more general case. 

2. Physical situation, symmetries and classification 

The system we are dealing with is a quasi-one-dimensional conductor with static 
disorder. We assume it to be long enough for its physical properties to be dominated 
by a single length scale. This implies natural units, and the spatial extension will be 
described by a dimensionless parameter s E R+. To have a non-empty range of validity, 
temperature has to be low enough to give an inelastic scattering length large compared 
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to unity. We always think of our sample as being connected to two half-infinite ideal 
conductors. This reflects the experimental setup and lends itself well to a scattering- 
theoretic approach. Finally we endow the particles with a spin degree of freedom that 
transforms according to an irreducible unitary representation of SU(2). 

To discuss the symmetries of the problem, we consider an arbitrary but fixed sample. 
Its physical properties are determined by a scattering matrix S E  U(2n), n EN counting 
the number of scattering channels. S maps incoming states (Lizft, $l:h' E C"  onto outgoing 
ones +F,euf:, *:,$''E C"  via 

This relation may be reformulated in terms of a 'transfer matrix' T E U(n, n )  by 

The physical operation of connecting two samples amounts to multiplication of their 
transfer matrices. 

The implementation of a possible time reversal symmetry involves an antiunitary 
operator represented by 

* E  @ "  + T I j E  @ "  rEU(n) .  (3)  

Let the spin equal J E N/2, and let m E N be the number of channels so that n = m(2J + 1). 
Adopting the usual conventions, we write r as 

T =  1'"@exp(i.rrJz) (4) 

J2 being the second component of angular momentum which we choose to be purely 
imaginary, as in the standard representation [3]. Consequently r = .T = ET' = ET-' = er t ,  
E = -(-l)dim[J1. Especially r2 = E x 1'"). 

We have an induced transformation on U(n, n )  also denoted by 7: 

r:U(n,  n ) + U ( n ,  n )  
( 5 )  

r acting on U(n, n )  is an involution, r2 = l ' n ) ,  and respects the group multiplication: 

T ( g l g 2 )  = T ( g I ) T ( g 2 ) .  ( 6 )  
Thus it fixes a subgroup Z2 x G ,  c U( n, n )  = U( 1) x SU( n, n )  which essentially depends 
only on the value of E E {-1, l}. 

We use the representation of the Lie algebra [4] 

and conjugate by 

x + ( 1  o r  ")'.(A ;) XEsu(n ,n) .  
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For the Lie algebras g, of the conjugated G,, one then finds 

A further conjugation by 

establishes the algebra isomorphisms 

and 

= so*(2n) 

(compare with [4]). We finally summarize the three universality classes: 

Time reversal Transfer matrix group 

none U(n, n )  = U(1) x SU(n, n )  

integer spin zz x Sp(n, R) 

half-integer spin Zz x SO*(2n). 

(12) 

Identification of a real physical system within this framework depends on the way 
in which the spin participates in the interaction with the background. The first case 
applies when magnetic interactions are present. The second class contains time-reversal- 
invariant samples without essential spin-background interaction. This is the situation 
treated by Mello and coworkers [l]. The last group refers to electronic systems with 
spin-orbit scattering present. 

The appearance of three universality classes of models is a common feature of 
several statistical theories. It was found by Dyson in his studies of distributions of 
energy levels [ 51, and related classifications apply to disordered electron systems, as 
was pointed out by Wegner [ 6 ]  and Efetov [7]. 

For notational convenience let us agree that G& denotes one of above symmetry 
groups and Go its semisimple part in the sense indicated in the table. The model turns 
out to be sensitive to Go only. 

Finally let us recall that ‘the’ observable of our problem, the Landauer conductance 
ie [8], can be expressed in terms of the transmission blocks of the S-matrix as follows: 

ie = f[tr( t t t )  + tr(t’+t’)]. (14) 

With the abbreviation Z = ZIZO’ (Z’= ZiZ&-’) this reduces to an expression in terms 
of the transfer matrix T as 

i e = t r ( l ( n ’ - Z + Z )  = t r ( l ( n ) - Z ” Z ’ ) .  (15)  
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3. Concept of the theory 

Having introduced the basic ingredients in the last section, we are now able to define 
the mathematical counterpart of our physical setup. For two reasons we will d o  that 
from a global point of view independent of a special choice of coordinates. The first 
is simply to present an alternative approach to be contrasted with Mello's maximum- 
entropy principle [l] .  The separation into structure on the one hand, and special 
features that result from a particular choice of parameters on the other, becomes 
transparent and allows an  a priori glance at properties and  drawbacks of the model. 
The second is that the language chosen seems to be well suited in the sense that the 
solution of the theory can be expressed in terms of a well known mathematical concept 
(the heat kernel) and is immediately available in a semi-explicit form. 

A suitable specification of the configuration space of the problem is achieved by 
observing that a specific sample of length s E R' and transfer matrix T ( s )  E Go may 
possess a variety of possible internal structures. This could in principle be analysed 
by successively growing the sample and thus tracing a path T E  Co([O, s], Go) starting 
at  the identity e and ending at  the transfer matrix T ( s ) .  Consequently a plausible 
choice of configuration space is 

At this point one is tempted to try and  proceed by appealing to the theory of 
Brownian motion, the clear paradigm of a probability theory on some path space. 
However, its formulation relies in an  essential way on the Riemannian structure of the 
underlying manifold. In this context it is important to realize that the non-compact 
semisimple Lie groups are only pseudo Riemannian when endowed with their natural 
left-invariant geometry. This difficulty could, of course, be cured by introducing some 
other geometry, different from the natural one, but we have no way of deciding what 
geometry that should be and  the theory would become dependent on new and  arbitrary 
input. 

A sensible compromise is suggested by the following observations. ( i)  Let K,, denote 
a maximal compact subgroup of Go. Explicit construction of K,,, and  use of the 
relations given at  the end of the previous section, show that the Landauer expression 
for the conductance 9 is bi-invariant under K,,. (ii) Each of the groups Go brings with 
it a Riemannian manifold Go/& obtained by forming left cosets with respect to K,,. 
Consequently, if we decide to answer only a restricted set of questions, we may project 
on Go/&. It is fortunate that this projection matches perfectly with the invariance 
properties of the Landauer conductance 3, as indicated. 

For the time being we only intend to study properties of the sample as a whole 
and  consequently end u p  with the following concept. 

We postulate the average over disorder to correspond to Brownian motion on 
Go/&. Any physical sample is represented by some random path on Go/&, connecting 
the origin e& to T ( s ) & .  T ( s )  is the transfer matrix for the sample with length s E [w+ 

in question. Let dgKo be the invariant volume form on Go/& and w ,  = p .  dgKl, ,  
pr :Go/&+ Rf, the induced probability density. The assumption of Brownian motion 
implies that p ,  satisfies the heat equation 

A denotes the Laplace-Beltrami operator on Go/& and So is Dirac's distribution with 
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respect to the origin o = e& = KO. The prefactor is a matter of convention via redefini- 
tion of length scale. As observables we choose K,-invariant functions f : Go/€& + R 
integrable with respect to w , .  The expectation value o f f  will be written as 

(f).=[ fwc.  (18) 

be the operation of averaging over KO in 
GI KO .. 

We finish with some remarks. First, let 
the sense of 

d k  being the invariant volume form on K,,. By the symmetries at hand, namely 
p , (kx)=p, (x)  for k e & ,  we have 

mi =(?A (20) 

for any suitable f :  Go/&+ Iw. Consequently the model does not distinguish left cosets. 
An adequate projection of observables defined on the whole group Go is given by 

We emphasize that from our point of view this construction does not necessarily imply 
that the 'phases' KO are equally distributed with respect to dk. Questions concerning 
the &-degrees of freedom are simply not allowed, as explained above. Second we 
remark that Mello's Focker-Planck equation [ 11 is the just given heat equation represen- 
ted on Go with a special choice of coordinates. 

A further satisfying test of consistency is the observation that it does not matter 
whether one passes to the quotient before demanding some time-reversal invariance 
or first restricts to the subgroups and then passes to the quotient, since the involution 
7 descends to a well defined map on Go/& that fixes the coset spaces belonging to 
the time-reversal-invariant systems. 

4. Some conventions and basic objects 

We try to choose our notational conventions in a standard manner, so that most of 
the symbols should be clear from the context. To begin with we list some facts useful 
in the discussion of the model. Let M = G/U, G being a semisimple non-compact Lie 
group, U c  G a maximal compact subgroup. G acts as a transformation group on M 
by h(gU) = hgU. We denote the origin by o = eU. The Riemannian structure on M is 
induced via restriction of the Cartan-Killing form to TO(G/U) =p,  g = u O p .  We denote 
with Exp the exponential map at the origin 0: 

Exp: T,(G/U)+G/U 
X + Exp(X) = exp(X)U. 

This yields a global chart. The invariant volume form dg, pulls back to [4] 

By the action of Ad(U), p may be reduced to a maximal Abelian subspace a c p ,  
p = Ad(U)a. Calculation of the above determinant requires knowledge of the 
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eigenvalues of (ad H)' : p + p ,  14 E a. These give rise to a set A' E a* of linear functionals 
that are positive when restricted to the 'positive Weyl chamber' a' c a, which is bounded 
by subsets of hyperplanes a = 0, a E A + .  Let p = xatA+ m,a, IS = naGA+ (sinh 0 a)", 
7 r = I I a E A +  a"'" where m, gives the multiplicity of a € A + .  In the case of complex G 
all ma are equal to 2, which is a consequence of the fact that all root subspaces of a 
complex Lie algebra have complex dimension 1. 

In the application we have in mind, G will play the role of complexified transfer 
matrix group Go. On the space Go/& the analogous constructions will be denoted by 
the same letters with subscript 0 whenever no confusion is possible. 

In the representation of the Lie algebras as given in the second section, the maximal 
Abelian subspaces consist of matrices of the type 

( 2 4 )  

in the cases su( n, n )  and sp( n, R) and 

in the case s o * ( 2 n ) .  (For our purpose n is always even in the last case.) In all cases, 
let e , ( H )  = h , .  We give a list of positive roots and multiplicities for completeness: 

Roots 
Algebra - 2 e, e , + e , ,  i > j  e , - e , , i > j  

d n ,  n )  1 2 2 ( 2 6 )  
sp(n, R) 1 1 1 
s o * ( 2 n )  1 4 4 .  

5. The probability density 

Calculation of the probability density p is, by construction, equivalent to determining 
the heat kernel on a non-compact Riemannian symmetric space Go/&, Go a non- 
compact semisimple real Lie group, K,, a maximal compact subgroup. This problem 
is well known in mathematics. The work of Flensted-Jensen [9] reduces it to the case 
when Go has a complex structure. The heat kernel in this case is expressible in terms 
of elementary functions. To make this discussion essentially self-contained we give an 
independent argument in terms of more elementary geometric notions and refer to 
Flensted-Jensen for a more general background on Fourier analysis. While prepraring 
this publication, we became aware of the work of Anker and Lahoue [lo] where the 
same argument is applied. 

We start by remembering two general manipulations. Let no = dim( Go/ K,,) and let 
1x1 denote the geodesic distance of a point x E Go/& from the origin. To split off the 
correct singularity as s + 0 let p = % x q with 

8 :  R'xG, /K , ,+  R' 
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This leads to 

lim q(  0) = 1 
5-0 

d,q = 4Aq - A(ln(cp’”q))q 

A denotes the vector field (viewed as a differential operator) specified by 

A = grad( g), 
I . I is the function x +IxI and cp : Go/&+ R is given by 

J (so 0 Exp)(X) = det 

5739 

(28) 

and measures the expansion of volume with respect to the tangent space at the origin. 
A further substitution q = cpl”u yields 

~ , u = ~ A u +  VU-B(U) 

Examination on the maximal Abelian subspace leads to 

1 
Ps(x)-(2.rrs)“0/2cp (33) 

as x + m. This expression is simple enough to permit a discussion of localization lengths. 
When Go additionally possesses a complex structure, the root multiplicities all 

equal 2, implying as a matter of fact V = -511pll’. This turns the above formula into 
an identity. 

Now let G be the complexification of Go, U a maximal compact subgroup containing 
& and P the heat kernel on G/U.  We now view Go/ & as a totally geodesic submanifold 
on G/U. The tangent space ToG/U = ikoOpo decomposes transversally. The negative 
sectional curvature of the spaces at hand ensures that the map 

is a diffeomorphism onto G/U.  Thus G / U  decomposes into Go/& and additional 
transverse degrees of freedom. The important fact is that integration along ik, relates 
the heat equations on both spaces as can be seen as follows [lo]. A straightforward 
computation yields ( x  = Exp( X ) )  

= det(cosh ad Xl,,,)(dgK,,),(Exp* dkKo)K. (35) 
Inspection of the Iwasawa decomposition [4] shows 

det(cosh ad = det(cosh ad Xl,J (36) 

by suitable orientation of ik,. 
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With v:Go/&+Go/& given by v(Exp(  Y ) )  = Exp(2Y), we finally have 

(4*dgu)(.x,Kj = 2-"n(~*dgK,,).x(Exp* d k ~ ~ ) ) ~ .  (37) 

Let f: G / U  + [w be a function such that 

exists. Additional U-invariance of f  implies &-invariance o f f  and 

K denoting complexified & as a subgroup of G. The K-radial part [ l l ]  A' of the 
Laplace-Beltrami operator on G / U  is thus related to the radial part Ab of the Laplace- 
Beltrami operator bo on Go/&: 

A' = 4(A&)". (40) 

The solution of the heat equation (17) may be expressed as 

P itself is given by a formula of type (33). 
Looking at Go/& with its geometry induced by the Killing form on go x go requires 

a rescaling of the metric by a factor of one half. 
Although it reflects the large amount of symmetry of the problem at hand, the final 

formula is still rather difficult to handle. In particular, it is not obvious how a sharp 
upper bound may be obtained. For a different approach yielding an interesting 
inequality in the Go = SU( n, n) case, see Anker [ 121, who in addition gives a conjecture 
on a sensitive upper bound for the heat kernel on Riemannian symmetric spaces. 

In the single-channel case the above formula is an effective means of giving the 
distribution function of conductance explicitly by simple manipulations avoiding the 
use of special features of Legendre functions. Since it was not given in [ 131, we briefly 
outline this case which essentially is the textbook example of heat conduction on the 
hyperbolic plane [9, 141. 

We have 

Go/&=SU(l ,  l ) / U ( l ) = S O ( 2 ,  1) /S0(2)  

G / U  = SL(2, @)/SU(2)  = SO(3, 1) /S0(3) .  

As a model we use 

G/U 2 {(X', X )  E R' X [ w 3 1 ( ~ 0 ) 2  - 1x1' = -1} (43) 

with SO(3, 1)-invariant geometry via restriction of ds' = /dx12 - (dx")'. With respect to 
polar coordinates by x = sinh( t ) &  t E R', 

(44) 

E S 2 ,  we have 

ds' = dt2  + sinh'( t)ld&I2 

and 
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Imbed Go/& by x '=O,  x = ( x 1 , x 2 , x 3 ) ;  put x=(O, s inh (a )e ) ,  UER+, e E S '  and  
generate G/U by mapping 

cosh(u)  s inh(u)  0 0 
s inh(u)  cosh(u) 0 0 

0 1  
sinh( a )  e 

Comparing xO-components yields t (  U, a )  = cosh-'(cosh( u)cosh( U)) and finally 

by substitution. 

distribution function we have: 

w,(g)=--e-7/8 S -) du  

Finally, with respect to above coordinates $2 = c 0 s h ( a / 2 ) - ~  and for the conductance 

T 1  lox cosh-'(cosh( U)/*) cosh-'( cosh( U)/-)' 
(2Ts)3/2 Jcosh(  U)* - Ce 

(48) 

while expectation values are computed as 

6. Localization lengths 

This and  the following section are devoted to the two main physical features of the 
model. Let us first deal with the localization phenomenon. Put 

(50) 

and define the localization length so to be the greatest lower bound of 2 (so = CO if 
2 = 0). Since this bound depends on the convergence properties of the integral ( % ) 5  

at spatial infinity, we use the approximate solution of the heat equation. We have to 
study the integral 

2 = { I  E R+le"''( Ce)5  is bounded above as s + CO} 

1 % ( X ) P Y ( ~ )  d g K ( ,  
Go/ Ko 

xexp(-l( p l l * s / 2 ) ~ ~  ' ( H I 6 1  * ( H I  d'H. 

Referring to the choice of a, given at the end of section 4 
W 

(90 E x p ) ( H ) -  C 4exp( -2e , (H) )  
, = I  
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within the first two classes and 

in the time-reversal-invariant half-integer-spin case. Up to (inverse) powers of s the 
relevant information is contained in integrals of the type 

1 
& ( P )  =o'/z 1., exp(-P(H))  exP(-IIH/I2/2s) exP(-llPol12s/2) exP(Po(H)) d 'H 

(54) 

where p is a positive root. The main clue is that for c = ( p ,  p ) / I I p i i 2 > 0  we have 
P (  H, - cHp) = 0. Thus H, - cHp E aa,' and by convexity H, - uH, E a i  for 0 s u < c. 
It is useful to reexpress 

x exp( - II 5 1 1 2 )  exp[(s/2) II po - cP 11'1 d'5. (55) 

One has to distinguish the cases c < 1, c = 1 and c > 1. The important one turns out to 
be c < 1, P being simple. In this case the region aof -a( Hpo - cHp) eventually fills 
the half space p 2 0  as s+cc  and 

Up to a common, n-independent factor depending on normalization of the metric we 
arrive at the following table: 

Time reversal SO 

none -8n 
integer spin -4(n + 1) 
half-integer spin -8( n - 1). 

(57)  

As expected, the localization length scales with the number of scattering channels in 
all cases. 

7. Universal conductance fluctuations 

Perhaps the most interesting feature of the model is the appearance of universal 
conductance fluctuations in the asymptotic n + CC limit, as demonstrated by Mello [ 2 ] .  
We adopt his computational method to obtain a list of all three universality classes. 
Mello's basic idea was to study the expectation ( W ) y  by assuming asymptotics with 
respect to n as 

( % p ) T  = n P ~ p , o ( s ) + n p - ' & , , ( s ) + .  . . . (58) 
To set up differential equations for the &,, one has to compute 

d 
-(W'), = 
d s  (59) 



Disordered wires from a geometric viewpoint 5743 

For this a suitable choice of coordinates has to be made. We distinguish the three 
cases with an  index E =0,  1,  - 1  for SU(n, n), Sp(n, R), SO*(2n). Without going into 
details, we remark that the embedding of Sp(n ,R) /U(n)  and  SO*(2n)/U(n) in 
SU(n, n ) / S (  U (  n )  x U( n) )  as complex manifolds allows to a great extent, simultaneous 
treatment of the different systems. After adequate rescaling of length in all cases, we 
are led to the following system of equations: 

d 
d s  

( n  + E ) - (  %qS = ( - p W + l -  Ep%2%p-l - ( 1  + E 2 ) p ( p  - 1 ) (  g3 - %2)%’-2)s 

d 
( n + E ) - ( 

d s  I 

= ( - ( p  +3)g2%” + 2%’’’ 

d 
ds 

d 
d s  

( n  + E ) - (  %3%’-’)s = ( - ( p  + 5 ) % 3 % ’  + 6%2%” - 3%i%p-1)s  +O(nP) 

( n  + E ) - (  %:%p-2)s  = ( - ( p  + 6 )  %;%’-I + 4%2%’), O(nP) 

(compare with [2] for the E = 1 case). Here 

%k(Z) = t r ( ( l ( n , - Z t Z ) k ) ’  %; = 3‘. 
while 2 was introduced in the context of equation (15 ) .  Introducing asymptotic 
expansions with respect to the number of channels as well for the other functions 
( % 2 % p - l ) s ,  ( % 3 % p - ’ ) 5 ,  ( %:%p-2).y, one arrives at systems of ordinary differential equations 
which may be solved successively. As a variable, it is useful to introduce x = s + 1 since 
everything has to be regular as s+O. The outcome is 

with 

P 
18 

yo(p) = -[(4E2+3)p + ( 4 2  - l ) ]  

P 
15 

r l (  p )  = - - [ (3~’+ 8 ) p  + (YE’ + ;)I 

3 s 2 + 2  
3 y2( p )  = fE2p +- P ( P + 1 )  

1 + E ’  
var(%),= lim lim((%’)s-(%):)=- 

1 5  ’ 5 - x  n - X  
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This result agrees with Mello’s original result of the F = 1 case [2] when the spin 
degeneracy factor in his calculation is taken into account. 

8. Summary 

In the present work we offered an alternative view on a theory of quasi-one-dimensional 
conductors. The use of geometric notions and natural structures at hand allows some 
intuitive insight and a global setup of the model. In comparison, Mello used a 
maximum-entropy principle and constructed the model from infinitesimal consider- 
ations. As a further extension, the classification with respect to different kinds of 
time-reversal symmetry was completed and  a list of the physical results may be given 
as follows: 

Time reversal Transfer matrices Localization length var( %)x 
1 

2 integer spin z2 x Sp(n, - 4 ( n + 1 )  15 2 

half-integer spin Z 2 x  SO*(2n) -8(n - 1) 15. 

- none U ( l ) x S U ( n , n )  -8n 15 

(65 )  - 

- 

As in related cases, the three universality classes are reminiscent of the classical types 
of Cartans list of simple complex Lie groups. The appealing feature of inducing the 
distribution function by an  explicit average over possible but unobserved internal 
structures of a sample is accompanied by the drawback that still no information about 
the ‘non-Abelian phases’ & is available. This seems to be a matter of additional 
microscopic input. 
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